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J. Phys. A: Math. Gen. 14 (1981) 1513-1518. Printed in Great Britain 

Asymptotic expressions for the widths of low-lying energy 
bands in one-dimensional periodical potentials 

T P Grozdanovi and S Yu Slavyanovj 
f Institute of Physics, Belgrade, Yugoslavia 
f Leningrad State University, Leningrad, USSR 

Received 15 September 1980 

Abstract. The motion of a quantum particle in a one-dimensional, slowly varying periodical 
potential is considered. By using the comparison equation method, the asymptotic expres- 
sion for exponentially small bandwidths of the low-lying energy bands is obtained. In the 
special case of a sinusoidal potential (corresponding to the Mathieu differential equation), 
the general formula reduces to an already existing result. Potentials, symmetrical and 
non-symmetrical, within the elementary period are discussed. 

1. Introduction 

One-dimensional models have been used many times in the past, at least for the 
qualitative description of the motion of a particle in a periodical field. Besides the 
calculations of the band structure (Kronig and Penney 1932), such models were used 
when treating more complicated phenomena such as surface states (Davison and Levine 
1970), tunnelling transitions in solids (Burstein and Lundqvist 1969) and so on. One of 
the most simple methods for band structure calculations is the WKB approximation 
(Brillouin 1950, Balazs 1969). It is usually assumed that the WKB method applies only 
in the case of high-lying bands. Nevertheless, with the help of the comparison equation 
method, one can derive the asymptotic expansions for the widths of low-lying bands. 
The large parameter in the theory is defined by the slowness of the variation of the 
potential with respect to the characteristic scale. 

In the present work we derive the asymptotic formulae for the width and the 
position of the low-lying bands in a periodical, slowly varying potential. It is also 
assumed that the overlapping of the wavefunctions corresponding to neighbouring cells 
is small. Section 2 contains the formulation of the problem and the derivation of 
general formulae defining the spectra. In 43 the asymptotic expressions for the 
wavefunctions and the bandwidths are derived for the case of a symmetrical potential. 

Section 4 contains the bandwidth calculations in the case of a non-symmetrical 
potential, and a concluding discussion. The bandwidths are exponentially small with 
respect to the large parameter. The greater part of the calculations has a formal 
character, but the final results can be rigorously justified, at least in the symmetrical 
case, by using the method proposed by Alenitzyn (1981). We also mention here the 
work of Kuni and Storonkin (1977) where derivations similar to ours were performed 
for the diffusion problem. 
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2. Formulation of the problem and derivation of spectral equations 

We shall study the band structure of the one-dimensional Schrodinger equation 

u " ( x )  + (hh - h 2 q ( x ) ) u ( x )  = 0 (2.1) 

where h is the large parameter ( h  >> 1) and A is the spectral parameter, such that for the 
low-lying bands one has A =0(1). With respect to the potential q(x) we make the 
following assumptions: (i) q(x) is a periodical function with the period 2e (q(x +2e)  = 
q(x)), (ii) q(x) is regular at the real axis (to obtain the leading term of the asymptotic 
expansion it is sufficient to assume that q(x) is twice continuously differentiable), (iii) 
4(x) 3 0  and q(x) = 0 only for x = 0 on [-e, e], (iv) q'(0) = 0. Hereafter we call the 
potential that satisfies (v) q(x) = q ( - x )  symmetrical. It is also convenient to introduce 
the function p ( x ) :  q(x) = p 2 ( x ) ;  p ( - e )  < 0, p ( e )  > 0. 

It is well known that the allowed bands are the intervals [ A &  A:], [A;, A ? ] ,  
[A E, A g], . . . where A E are the eigenvalues of the periodical boundary problem 

u ( - e )  = u ( e ) ,  u ' ( - e )  = u' ( - e )  (2.2) 

and A are the eigenvalues of the antiperiodical boundary problem 

u ( - e )  = - u ( e ) ,  u ' ( - e )  = - U ' ( - e )  (2.3) 
for equation (2.1). 

We introduce two linearly independent solutions of equation (2.1): ul(A, x) and 
x). For the case of the symmetrical potential we choose u2(A, x) = ul(A, -x). 

(x) of the periodical and antiperiodical problems Expanding the eigenfunctions U 

(2.1), (2.2), (2.3) in terms of the basis functions 

u P , . " ( x )  =AP'a~ l (A ,  X ) + B ~ ' ~ U ~ ( A ,  X) 

we obtain from boundary conditions 12.2) and (2.3) the spectral equation for the 
determination of eigenvalues A tu 

[ul(A, - e )u ; (A ,  e)+ul(A, e ) u ; ( A ,  -e)] 

-[u2(A, - e ) u ; ( A ,  e)+u2(A,  e ) u ; ( A ,  -e)]=*2W(ul, u2) (2.4) 

where W(ul ,  u2 )  = u l u ;  - u ; u 2  is the Wronsky determinant of the solutions ul(A, x) 
and u 2 ( A , x ) ;  the signs + and -- correspond to the periodical and antiperiodical 
problems, respectively. In the case of the symmetrical potential, equation (2.4) can be 
factorised 

(2.5) [u l (A ,  e )*u l (A ,  - - e ) ] [u ; (A ,  e ) * u ; ( A ,  -e)]=O. 

Consider the auxiliary boundary problem 

U' (x) -+ (hA - h 2 G ( ~ ) ) U '  (x) = 0 

i i ( X ) + O  (2.6) 
X + * : a ,  

where G ( x )  is equal to q(x) on [-e, e], and outside that interval is smoothly continued in 
such a way that q ( x  j + +a3 when x + fm. It was shown by one of the authors (Slavyanov 
1969) that the asymptotic expansion of the eigenvalues X,(h), when h ++CO, of the 
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boundary problem (2 .6) ,  is determined by the local behaviour of the potential G ( x )  
p 2 ( x )  in the vicinity of x = 0. Let the following expansion hold: 

then A,, 1- Qk+l(pn)h-k ,  where F, = 2n -+ 1 ( n  = 0,1 ,2 ,  . . .) and Qk+l(p, , )  are 
polynomials of degree k + 1 with the coefficients depending on p 2 k ,  P 2 k -  I ,  . . . , PO. The 
first three terms of the asymptotic expansion are 

L = p,, + h 3 2 6 9  2 1 7 4  
( 2 ~ 2  - 2~:) + ($~2-;p?)l + h - 2 [ p i ( & ~ -  %3pi - Z P ~  - ~ - T P ~ P I  - T P I )  

(2.7) 

When A = in, besides the eigenfunction C,(x) we introduce the second solution 
~ i , ,  (x) exponentially increasing as x + fa, so that the Wronskian W ( & ( x ) ,  U1L2’ (x)) = 
2h. When A has arbitrary values we introduce the solution Cl(A,  x) with the property: 
Cl(A, x) + &(x) when A -+ i,. The function Cl(A, x) is a solution of the integral equation 

21 2 101 2 19 4 + pfl (?P4 -%PI - 8P2 + s p 2 p  1 - ;rP 1,l i- . * 9 * 

* (2) 

Cl(A,x)= C , ( X ) + ~  J x  ( C n ( x ) C L 2 ’ ( ~ ) - U 1 n ( ~ ) C L 2 ’ ( x ) ) ~ l ( A ,  [ Id5 
2h --97 

where S = A -A,. Assume S <: 1, then the first iteration of the above integral equation 
gives 

When x is large (x >> 1, x - -In S ) ,  we find 

where N is the normalisation integral 
+oi 

Equations (2.1) and (2.6) are identical on [-e, e], consequently we choose the 
solution ul(A, x) identical to Cl(A, x) on that interval. For the symmetrical potential we 
can assume that &(--x) = (--l)”&(x).  Then the dispersion equation (2.5) becomes 

where S is A: - x, or A: -A,. It is easy to show that at least in the first approximation 
with respect to h we have: C,,(e)/CL2’ = C;(e)/u”L2’(e). Then from the above dispersion 
equations we find for 6;“ A n - A n  * 

(2.9) 
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where the negative sign corresponds to the lower and the positive sign to the upper end 
of the allowed bands. Since the function u',(x) decreases exponentially and the function 
U, (x) increases exponentially in the underbarrier region, the deviations 8;'' are 
exponentially small quantities with respect to the parameter h. 

The band position, defined with the power accuracy with respect to h, is given by 
expression (2.7), and we assume that x, = (A E + A  :)/2. 

-0) 

3. The symmetrical potential and the Mathieu equation 

For the construction of the asymptotic expansions of the solutions of equation (2.1) and 
(2.6) we use the comparison equation method (see e.g. Slavyanov 1969, Cherry 1950). 
As a comparison equation we choose the Weber equation 

W " ( z )  + ( h p  - h 2 z 2 )  W ( z )  = 0. 

The general solution of the above equation can be expressed in terms of parabolic- 
cylinder functions 

(Bateman and Erdelyi 1953). When p = p,, = 2n + 1 they transform into the harmonic 
oscillator eigenfunctions. We try to find the solutions of equation (2.1) and (2.6) in the 
form 

ui(A, x) = ( z  I &,(A, x )  = ( z 1 ) - 1 ' 2 0 , 1 ( - J h z ) .  (3.1) 
I V l l 2  

D(F-1) /2( -JGz) ,  

The function z (x, h ) ,  the transformation of the independent variable and the spectral 
parameter A ,  are expanded into the asymptotic series: 

For the purposes of practical calculations it is convenient to introduce the function 

Substituting (3.1) into (2.1) we find that y ( x ,  h )  satisfies the nonlinear equation 

which can be solved by an iterative procedure to find the functions Y k ( X ) .  The 
conditions for the existence of smooth solutions yield expansion (2.7). Calculations 
give 
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Using the asymptotic expansions for large values of the arguments of the parabolic- 
cylinder functions, from equation (2.5) (or using formula (2.9)) we obtain 

6;" = T(-1ln - exp(--hy~(e))[y~(e)l  h exp(-yl(e)) n + l / 2  n + l  2n+2 
A n  

(3.3) 

Finally, from equations (2.7) and (3.3) and using the definitions 
h 2 k + 1 =  h g k + l  -hik+l ,  we find the width of the nth band 

-hgk,  

(3.4) 

As an example, we consider the Mathieu equation for which, in our notation, we 
have e = $v, q(x) = sin2x. Formula (3.2) gives 

2 

y (x) = 4 sin2 i x  + - @ In I cos zx 1 + - 1 [ p 2  - (lnlcosixl + 1  ) -- p3i3 tan2$x]+O(h-3) 
h h2  8 sin2 $x 

and from (3.4) we obtain 

+ O W 2 ) )  
. -2h n + 1 / 2  6n2+ 14n +7 23n+4 

( l -  8h 
An =- e h  

G n  ! 
(3.5) 

This asymptotic expression is in agreement with the result of Meixner and Schafke 
(1954). The form of the correcting term in equation (3.5) shows that our approximation 
is valid under the assumption 

n2<< h. (3.6) 

4. The non-symmetrical potential, discussion 

In the case of the non-symmetrical potential we introduce the following set of two 
linearly independent solutions of equation (2.1): 

ui(h,  X )  = ( z ' ) - 1 / 2 0 ~ , - l ) / 2 ( - J 2 h ~ ) ,  

The asymptotic expansions of the functiOn z ( x ,  h )  and the auxiliary function 
y(x, h) = z2(x ,  h )  can be constructed analogously to the preceding case, and formula 

(*e), (3.2) also holds here. Introducing the notations: v = ( p  - 1 ) / 2 ,  .z+ 

u2(h, x )  = (~'" '/~O~,-l)/2(J2hz). 

( k )  = Z ( k )  
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li = V%Z, ( z -  < 0, z.+ > 0), the dispersion equation (2.4) becomes of the form 

- ./;;7Z-(D,(-l+)D:(l-) +D”(l+)D:\-5 -)I 
J27T - ~ ~ ~ ( D ” ~ 5 - ) D : ( - l + ) + D ” ( l . . ) ~ ~ ( l + ) )  = *2 ---. U- v )  

Using the asymptotic expressions of the parabolic-cylinder functions again and solving 
the above dispersion equation by iteration we find the leading term of the bandwidth 
asymptotic expansion: 

The position of the band is given as before, by equation (2.4). 
The validity criterion of formulae (2.7), (3.3) and (4.1) is given by condition (3.6). 

This restricts the applicability of the present results to the low-lying bands, where the 
overlapping of the wavefunctions corresponding to thc neighbouring elementary cel!s is 
exponentially small. It could happen that the wavefunction has not the explicit 
asymptotic representation in the vicinity of the origin. In that case in order to use 
formula (2.9) it is necessary to know only the asymptotic expression of the wavefunction 
in the underbarrier region, and the normalisation constant N must be calculated 
numerically. 

Within the present approach it is possible to calculate the asymptotic expansions of 
the more complicated quantities characterising the motion of the particle in a periodical 
field, for example, the effective mass. Also, the phenomena connected with the 
deviations due to aperiodical fields can be considered. An interesting effect of the 
degeneracy of the bands is investigated in the work of Kuni and Storonkin (1977). 

The question arises whether the prqsent results could be used for the calculation of 
the bandwidths of the three-dimensional potentials. This can be done for problems 
with almost separable variables, where the potential can be considered as spherically 
symmetric within each elementary cell. In this case, one can introduce the analogues of 
the functions Cn and C(,z) and obtain a formula similar to (2.4). 
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